Rational use of antibiotics

Uga Dumpis MD, PhD, DTM
Stradins University Hospital
Riga, Latvia
ugadumpis@stradini.lv
Why to use antibiotics?

- Prophylaxis
- Empirical treatment
- Definite treatment
Why not to use antibiotics?

- Resistance selection pressure
- Increased risk of superinfection
- Toxicity
- Interactions with other drugs
- Costs
What is the most appropriate antibiotic?

- Narrow spectrum
- Easy to administer
- Cheap
- Least toxic
- Low selection pressure
- Oral Penicillin
Before to start treatment

- Try to identify the pathogen
 - Express tests
 - Cultures
 - Serology
 - At least to consider something in mind
- Pharmacological and pharmacokinetical considerations
 - Tissue concentrations
 - Type of bacteria
- Host factors
 - Organ failure
 - Pregnancy
 - Allergy
 - Difficulties with absorption
How to use an antibiotic?

- Relevant indications
- Epidemiological considerations
- Appropriate choice
- Appropriate dosing
Relevant indications

- **Surgical prophylaxis**
- **Definite bacterial infection with positive culture**
- **Empirical treatment**
 - Clinical features (pyrexia, tachicardia, tachipnoe, low blood pressure)
 - Pus and systemic symptoms
 - Radiological findings
 - Laboratory findings
 - Elevated or decreased WBC count, shift to left, CRP > 100 mg/l and elevated Procalcitonin (Simon L, 2004)
 - Urine dipstick for nitrite and leucocyte
Epidemiological considerations

- Most prevalent pathogens
- Local resistance pattern
- Presence of outbreaks
- Risk factors for resistance
Resistance selection pressure

Class of antibiotic

Amount of antibiotic

per

Number of patients

per

per

Geographical area
Macroepidemiological considerations

- Penicillins
- Aminoglycosides
- Nitrofurantoin, trimetroprim
- First generation cephalosporins
- Second generation cephalosporins
- Tetracyclines
- Macrolides
- Third generation cephalosporins
- Fluoroquinolones
- Carbapenems
Marketing pressure

<table>
<thead>
<tr>
<th>Cheap</th>
<th>Expensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>III gen cephalosporins</td>
</tr>
<tr>
<td>Ampicillin/Amoxicillin</td>
<td>Newer Macrolides</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>Fluoroquinolones</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>Penicillins/β- lactamase inhibitors</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>Carbapenemems</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td></td>
</tr>
<tr>
<td>Trimetroprim</td>
<td></td>
</tr>
</tbody>
</table>
Risk of superinfection

- **Clostridium Difficile infection**
 - III generation cephalosporins,
 Amoxicillin/Clavulanate, Clindamycin,

- **MRSA**
 - Macrolides (Goosens et al, 2004)
Risk of superinfection

- **Disseminated candidiasis**
 - Carbapenems
 - Cephalosporins

- **ESBL producers Gr negatives**
 - Cephalosporins (Rahal JL et al, 1998)
 - Piperacillin/Tazobactam

- **Multiresistant Pseudomonas aeruginosa**
 - Cephalosporins
 - Carbapenems (Leroy O et al, 2005)

- **Carbapenem resistant Acinetobacter Baumanii**
 - Cephalosporins
 - Carbapenems (Lee SO et al, 2004)

- **Stenotrophomonas maltophilia**
 - Carbapenems, Cephalosporins (Carmeli Y, 1997) (Hanes SD et al, 2002)
Treatment of resistant bacteria

- Choice of empirical treatment complicated
- Antibiotics with more side effects
- Combinations increase toxicity
- Risk of superinfection
- Costs
Pharmacokinetic/Pharmacodynamic (PK/PD) relationships

- Concentration independent – time dependent
 - β- lactams
 - Penicillins, Cephalosporins, Carbapenems
 - Vancomycin, macrolides, clindamycin
 - 3-6 times the MIC, with further concentration little effect
 - % of time above MIC (% $t >$ MIC) important
Time dependant strategies

- More-frequent daily doses
- Using concomitant inhibitors of antimicrobial clearance
- Continuous infusion (Craig WA et al, 1992) (Kasiakou SK, 2005) (Frei CR, 2005)
 - Cefepime - Pseudomonas aeruginosa
 - Burgess DS et al, 2000
 - Tam VH et al, 2003
 - Meropenem – VAP
 - Lorente L et al, 2006
 - Piperacillin/Tazobactam – Gr neg abdominal
 - Buck C et al, 2005
 - Vankomicin – VAP caused by MRSA
 - Blot S, 2005
 - Kitzis MD, 2006
Pharmacokinetic/Pharmacodynamic (PK/PD) relationships

- Concentration dependent
 - Aminoglycosides
 - Fluoroquinolones
 - C_{max}: MIC ratio of 8-10
 - 24h AUC/MIC 100-125
- Limitations by toxicity
Concentration dependant strategies

- Aminoglycosides once daily
 - Gentamycin 7mg/kg (Nicolau DP et al, 1995)
 - Amikacin 15 mg/kg

- Fluoroquinolones in maximum dose
 - Ciprofloxacin 400mg
 - Levofloxacin 750 mg

- Dose adjustment in critically ill patient with organ failure
Combination therapy

- **Wide spectrum coverage needed**
 - β- lactams + macrolides
 - β- lactams + glucopptides
 - β- lactams + aminoglycosides + glucopptides

- **Synergic action**
 - β- lactams + aminoglycosides
 - β- lactams + fluoroquinolones (switch to oral possible)

- **Prevention of resistance acquisition**
 - *S. aureus* – rifampin, clindamycin, fluoroquinolones
 - *Pseudomonas aeruginosa* – Carbapenems
Antagonism in vivo

- Penicillin and chlortetracyclin (Lepper MH et al, 1951)
- Ampicillin and chloramphenicol (Mathies AW 1967)
- ????
- ????
- ????
- ????
- Caution needed with previously unstudied combinations
Route of administration

- Oral therapy preferable
 - Equally effective for the most indications
 - Cheaper
 - More convenient
 - Reduced catheter infection risk

- Intramuscular route is dubious

- Intravenous administration for severe disease or specific location
When to change from iv to oral

- Signs and symptoms are improving
- Patient can take oral medication
- A suitable oral agent is available as per guidelines or microbiological results
- Patient has no:
 - Meningitis
 - Osteomyelitis
 - Septic arthritis
 - Endocarditis
 - Immunosuppression
Route of AB administration in Stradins University Hospital, Riga
Length of treatment

- Early (1940-50s) use 3-5 days until fever subsides
- Later (1960-1990s) 10-14 days for registration purposes
- Today (2000-) a maximum of 5-7 days except
 - Osteomyelitis
 - Endocarditis
 - Abscess
 - Cl. Difficile infection
 - Immunocompromised (neutropenia, diabetes)
- Stop antibiotics immediately if it is not necessary to continue
If treatment does not work
(no improvement after 48 hours)

- The diagnosis is incorrect
- The choice of antibiotic is incorrect
- The antibiotic cannot reach the site of infection
- The etiological agent is resistant to the antibiotic
 - Abscess - Surgical drainage maybe needed
- There is a secondary infection
- Non – compliance of the host
- Antibiotic fever
Treatment is not effective

- Repeat the cultures
- Continue with the present regimen
 - increase the level of treatment by changing from oral to parenteral
 - Increase the dose
- Change the regimen
 - Change to more specific narrow spectrum antibiotic according to the culture
 - Change to a broader spectrum antibiotic
Treatment is effective

- decrease the level of treatment by changing from parenteral to oral
- decrease the dose or change to a more specific narrow spectrum antibiotic
- stop the antibiotic; the objective of treatment is achieved or the diagnosis has been changed.
Guidelines

- Good for people who have no idea how to use antibiotics
- Good if evidence based
- Good as consensus between specialists
- Good if local and done by professionals
- Bad if sponsored by pharm companies
- Bad if translated and adapted
- Bad if not local consensus
- Bad if not updated
Questions to answer every time

- Is an antibiotic really necessary?
- What is the most likely pathogen?
- What is the local resistance pattern?
- What is the most appropriate antibiotic?
- How it will influence the resistance selection pressure?
- What dose, route, frequency and duration are needed?
- Is the treatment effective?