Antimicrobial Resistance in the Baltic Region
Thursday 16 March 14.30 – 16.00

Chair: Barbro Olsson-Liljequist
WG1 members: Paul Naaber (EE), Arta Balode (LV), Edvins Miklasevīds (LV), Jolanta Miciuleviciene (LT)
Peet Tull (ECDC)
Surveillance of antibiotic resistance – why, how, when and by whom?

Barbro Olsson-Liljequist
Div of Antibiotic Resistance and Hospital hygiene
Swedish Institute for Infectious Disease Control
Solna, Sweden
ANTIBIOTIC RESISTANCE

- **Problem statement**
 Infectious diseases do not recognize geographical borders. Microbial antibiotic resistance is increasing worldwide and lack of effective treatment has resulted in increased morbidity and mortality of infectious diseases.

- **Overall objective**
 Correct antibiotic policy saves lives and money. Therefore there is a need to make a strategy for the prudent use of antibiotics to ensure that we also in the future will be able to cure infections.

- **Recommendations**
 Every country should develop a national policy programme for the correct use of antibiotics. Important elements of a programme are:
Sigtuna conference 2000 (2)

A. National antibiotic resistance surveillance
 – standardization and quality assurance of laboratory monitoring of antibiotic resistance
 – means for data collection, analysis and report procedures

B. Guidelines for the prudent use of antibiotics in humans and animals
 – availability of essential drugs
 – treatment recommendations for important bacterial diseases

C. Hospital infection control
 – antibiotic and infection control teams consisting of infectious disease specialists, microbiologists and pharmacists at local hospitals
Sigtuna conference 2000 (2)

A. National antibiotic resistance surveillance
 – standardization and quality assurance of laboratory monitoring of antibiotic resistance
 – means for data collection, analysis and report procedures

B. Guidelines for the prudent use of antibiotics in humans and animals
 – availability of essential drugs
 – treatment recommendations for important bacterial diseases

C. Hospital infection control
 – antibiotic and infection control teams consisting of infectious disease specialists, microbiologists and pharmacists at local hospitals
A. National antibiotic resistance surveillance
 – standardization and quality assurance of laboratory monitoring of antibiotic resistance
 – means for data collection, analysis and report procedures

B. Guidelines for the prudent use of antibiotics in humans and animals
 – availability of essential drugs
 – treatment recommendations for important bacterial diseases

C. Hospital infection control
 – antibiotic and infection control teams consisting of infectious disease specialists, microbiologists and pharmacists at local hospitals
Antibiotic Susceptibility Testing, AST
What is it?

- Methods for *in vitro* testing of the antibacterial activity of an antibiotic against clinical isolates of bacteria

- Indicate success (S) or failure (R) of antibiotic treatment based on microbiological findings!
AST - How to perform it?

- **Quantitative methods (MIC, mg/L)**
 - Agar dilution
 - Broth dilution
 - Etest

- **Qualitative method (S I R)**
 - Disk diffusion
 - Breakpoint methods

Must always be standardised!
AST - Why performing it?

- Guidance for treatment of the individual patient
- Background information for empirical treatment
- Means of detecting new resistance
 - For epidemiological investigations
 - Accumulated data might lead to changes in empiric treatment

Clinicians should request it!
AST - Who should perform it?

- All clinical microbiology laboratories
 - As an important part in the care of patients
- Microbiological reference/referral laboratories
 - Confirming susceptibility / resistance in clinical isolates using reference and genetic methods
 - Quality assessment and assurance
 - National surveillance of AMR
 - Education

Agreement on a national basis!
Surveillance systems

- **EARSS**: European Antimicrobial Resistance Surveillance System
- **ResNet**: Swedish national surveillance and quality assurance
- **Notifiable diseases** (MRSA, VRE, PRP)
EARSS: invasive isolates of 5 bacterial species from consecutive clinical samples

- **Representative data:** Clinical laboratories serving at least 20% of national population

- **Bias:** When comparing data between countries some bias may be present. Bias can be due to differences in case mix and hospital specialities or may be introduced as a result of different routines between countries
Proportion of bacterial species among invasive isolates reported to EARSS 2004

- Finland (n=3475)
- Sweden (n=7088)
- Croatia (n=1144)
- Norway (n=1940)
- Estonia (n=373)
- Poland (n=509)

Legend:
- E.coli
- S.aureus
- S.pneum
- Enterococci
E. coli with ESBL in Europe 2004

Proportion of 3rd gen. ceph. resistant E. coli isolates in participating countries in 2004

(c) BARSS

Legend:
- No Data
- < 1%
- 1 - 5%
- 5 - 10%
- 10 - 25%
- 25 - 50%
- > 50%
E. coli with ESBL in blood and urine samples, Sweden 2004

Blood (EARSS): E. coli from 21 labs, n = 3372
- Cefotaxime-R, n = 33 (1.0%)
- 16 ESBL; 15 CTX-M-type, 1 SHV-type (0.5%)

Urine (ResNet): E. coli from 29 labs, n = 3135
- Cephalosporin-R, n = 33 (1.1%)
- only 3 ESBL, all CTX-M-type (0.1%)
Andel resistenta - Sverige

<table>
<thead>
<tr>
<th>Län</th>
<th>Andel resistenta</th>
<th>Län</th>
<th>Andel resistenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blekinge</td>
<td>0.0</td>
<td>Medlab</td>
<td>2.0</td>
</tr>
<tr>
<td>Dalarna</td>
<td>0.0</td>
<td>St Göran Nova Medical AB</td>
<td>1.7</td>
</tr>
<tr>
<td>Gotlands</td>
<td>0.0</td>
<td>Huddinge sjukhus</td>
<td>0.0</td>
</tr>
<tr>
<td>Gävleborg</td>
<td>1.0</td>
<td>Södermanland</td>
<td>0.0</td>
</tr>
<tr>
<td>Halland</td>
<td>2.0</td>
<td>Uppsala</td>
<td>2.0</td>
</tr>
<tr>
<td>Jämtland</td>
<td>0.0</td>
<td>Värmland</td>
<td>0.0</td>
</tr>
<tr>
<td>Jönköping</td>
<td>1.0</td>
<td>Västerbotten</td>
<td>1.0</td>
</tr>
<tr>
<td>Kalmar</td>
<td>0.0</td>
<td>Västernorrland</td>
<td>2.0</td>
</tr>
<tr>
<td>Kronoberg</td>
<td>0.4</td>
<td>Västmanland</td>
<td>0.0</td>
</tr>
<tr>
<td>Norrbotten</td>
<td>2.0</td>
<td>Västra Götaland</td>
<td>0.5</td>
</tr>
<tr>
<td>Skåne</td>
<td>1.6</td>
<td>Borås</td>
<td>1.0</td>
</tr>
<tr>
<td>- Lund</td>
<td>3.2</td>
<td>Göteborg</td>
<td>0.0</td>
</tr>
<tr>
<td>- Kristianstad</td>
<td>0.0</td>
<td>Skövde</td>
<td>0.0</td>
</tr>
<tr>
<td>- Malmö</td>
<td>1.7</td>
<td>Uddevalla</td>
<td>0.5</td>
</tr>
<tr>
<td>SMI</td>
<td>-</td>
<td>Örebro</td>
<td>1.0</td>
</tr>
<tr>
<td>Stockholm</td>
<td>1.6</td>
<td>Östergötland</td>
<td>0.0</td>
</tr>
<tr>
<td>- Karolinska sjukhus</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sverige: 1.1

Art: Escherichia coli

Antibiotikum: Coladroxol

År: 2004

Visa: 1 antal år framåt
E. coli in urine samples 2004 (ResNet)
Percentage resistant - Sweden

<table>
<thead>
<tr>
<th>County</th>
<th>Percentage resistant</th>
<th>County</th>
<th>Percentage resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blekinge</td>
<td>37.6</td>
<td>Medlab</td>
<td>23.0</td>
</tr>
<tr>
<td>Dalarna</td>
<td>-</td>
<td>St. Göran Nova Medical AB</td>
<td>9.8</td>
</tr>
<tr>
<td>Gotland</td>
<td>10.3</td>
<td>Huddinge sjukhus</td>
<td>16.8</td>
</tr>
<tr>
<td>Gävleborg</td>
<td>21.1</td>
<td>Södermanland</td>
<td>16.8</td>
</tr>
<tr>
<td>Halland</td>
<td>12.0</td>
<td>Uppsala</td>
<td>7.0</td>
</tr>
<tr>
<td>Jämtland</td>
<td>-</td>
<td>Varmland</td>
<td>9.0</td>
</tr>
<tr>
<td>Jönköping</td>
<td>-</td>
<td>Västerbotten</td>
<td>-</td>
</tr>
<tr>
<td>Kalmar</td>
<td>6.4</td>
<td>Västerbotten</td>
<td>9.0</td>
</tr>
<tr>
<td>Kronoberg</td>
<td>18.5</td>
<td>Västerbotten</td>
<td>9.0</td>
</tr>
<tr>
<td>Norrbotten</td>
<td>18.8</td>
<td>Västerbotten</td>
<td>-</td>
</tr>
<tr>
<td>Skåne</td>
<td>13.7</td>
<td>Västerbotten</td>
<td>-</td>
</tr>
<tr>
<td>Lund</td>
<td>12.6</td>
<td>Västerbotten</td>
<td>-</td>
</tr>
<tr>
<td>Kristianstad</td>
<td>-</td>
<td>Västerbotten</td>
<td>-</td>
</tr>
<tr>
<td>Malmö</td>
<td>24.8</td>
<td>Västerbotten</td>
<td>-</td>
</tr>
<tr>
<td>SMI</td>
<td>-</td>
<td>Västerbotten</td>
<td>-</td>
</tr>
<tr>
<td>Stockholm</td>
<td>13.8</td>
<td>Västerbotten</td>
<td>-</td>
</tr>
<tr>
<td>Karolinska sjukhuset</td>
<td>15.0</td>
<td>Västerbotten</td>
<td>-</td>
</tr>
<tr>
<td>Sweden</td>
<td>13.8</td>
<td>Västerbotten</td>
<td>-</td>
</tr>
</tbody>
</table>

2003, Streptococcus pyogenes / Tetracyclin

Sverige - Kronoberg

ResNet – övervakning av antibiotikaresistens i Sverige

<table>
<thead>
<tr>
<th>Species</th>
<th>Streptococcus pyogenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibiotic</td>
<td>Tetracyclin</td>
</tr>
<tr>
<td>Year</td>
<td>2003</td>
</tr>
</tbody>
</table>

Data kollektion: 100-stams – Zone distribution

Metod: Lapddiffusion - Oxoid-material (RAF)

258 observationer

5 ± 25 mm R ≤ 21 mm
EUCAST – wildtype distributions of MICs
(www.srga.org/eucastwt/WT_EUCAST.htm)

Ciprofloxacin / Acinetobacter spp
Antimicrobial wild type distributions of microorganisms – reference database
EUCAST

MIC
Epidemiological cut-off: WT ≤ 1 mg/L

Clinical breakpoints: S ≤ 1 mg/L, R > 1 mg/L

2253 observations (7 data sources)
Antibiotics to test on invasive isolates (Swe)

<table>
<thead>
<tr>
<th></th>
<th>Gram-neg</th>
<th>Pseudomonas</th>
<th>Staph</th>
<th>Enterococci</th>
<th>Strept / Spn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>Amp, Pip-taz</td>
<td>Pip-taz</td>
<td>Oxa/Cfx</td>
<td>Amp/Pip</td>
<td>Pen (oxa)</td>
</tr>
<tr>
<td>Ceph iv</td>
<td>Ctx, Caz</td>
<td>Caz</td>
<td></td>
<td></td>
<td>(Ctx)</td>
</tr>
<tr>
<td>Carbapenem</td>
<td>Imi, Mer</td>
<td>Imi, Mer</td>
<td></td>
<td>Imi</td>
<td></td>
</tr>
<tr>
<td>Aminoglyco</td>
<td>Gen</td>
<td>Gen/Tob/Ami</td>
<td>Gen</td>
<td>Gen HL</td>
<td></td>
</tr>
<tr>
<td>Trim/sulfa</td>
<td>T/S</td>
<td>(T/S)</td>
<td>T/S</td>
<td>T/S</td>
<td></td>
</tr>
<tr>
<td>Van/Tei</td>
<td></td>
<td></td>
<td>Van/Tei</td>
<td>Van/Tei</td>
<td></td>
</tr>
<tr>
<td>Quinolone</td>
<td>Cip</td>
<td>Cip</td>
<td>(Cip)</td>
<td>Mox</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>Fus, Cli, Rif</td>
<td>Ery, Cli, Tet</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions about Surveillance of Antibiotic Resistance

- The tools are there: methods for routine susceptibility testing, databases, laboratory information systems (Whonet)
- More frequent sampling would provide more comprehensive data for empiric treatment (feedback from laboratories)
- More frequent sampling would provide more reliable data for comparison between laboratories / countries